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The parallel mutation-selection evolutionary dynamics, in which mutation and replication are independent
events, is solved exactly in the case that the Malthusian fitnesses associated to the genomes are described by
the random energy model �REM� and by a ferromagnetic version of the REM. The solution method uses the
mapping of the evolutionary dynamics into a quantum Ising chain in a transverse field and the Suzuki-Trotter
formalism to calculate the transition probabilities between configurations at different times. We find that in the
case of the REM landscape the dynamics can exhibit three distinct regimes: pure diffusion or stasis for short
times, depending on the fitness of the initial configuration, and a spin-glass regime for large times. The
dynamic transition between these dynamical regimes is marked by discontinuities in the mean-fitness as well
as in the overlap with the initial reference sequence. The relaxation to equilibrium is described by an inverse
time decay. In the ferromagnetic REM, we find in addition to these three regimes, a ferromagnetic regime
where the overlap and the mean-fitness are frozen. In this case, the system relaxes to equilibrium in a finite
time. The relevance of our results to information processing aspects of evolution is discussed.

DOI: 10.1103/PhysRevE.80.041903 PACS number�s�: 87.10.�e, 87.15.A�, 87.23.Kg, 02.50.�r

I. INTRODUCTION

Evolution on complex fitness landscapes has been ad-
vanced as a key idea in recent mathematical approaches to
evolution theory �1,2�. Concepts such as neutral networks
and punctuated equilibrium, which are central to such dispar-
ate areas as molecular evolution and paleontology, can be
brought together within that unifying framework. Since frus-
tration and quenched disorder combined together yield an
almost infallible recipe to generate complexity �3�, the evo-
lutionary dynamics on rugged fitness landscapes became a
research topic in the statistical mechanics of disordered sys-
tems.

There are a few reasons to consider spin-glass or random
fitness landscapes in the study of molecular evolution. Fit-
ness functions are related to the binding affinity of a molecu-
lar replicator �a RNA-like molecule� to a nonspecific repli-
case �4�. Given our present incapacity to predict affinity—
single amino acid replacements may prevent binding
altogether, increase affinity by orders of magnitude, or sim-
ply leave it unaffected �5�—the assignment of fitness values
chosen at random from some probability distribution seems
to be the least biased course to introduce fitness in evolution
models. In addition, evolution in any fitness landscape char-
acterized by a finite correlation length will resemble evolu-
tion in a random landscape when viewed at an appropriate
coarse-grained scale of the sequence configuration space �6�.
Finally, the analysis of the evolution on rugged or random
fitness landscapes has produced dynamical patterns, such as
punctuated equilibria �see �7,8��, that are actually observed
in microbial populations �9�.

Building on a mapping between the infinite-population
quasispecies model �10� and an anisotropic two-dimensional
Ising spin model in which the time t is one of the lattice
dimensions �11,12�, the evolutionary version of Derrida’s
random energy model �REM� �13,14� was solved exactly in

the infinite-time, equilibrium regime �15,16�. Two distinct
phases were found, corresponding to the selective and non-
selective regimes that characterize a model that exhibits an
error threshold transition �see also �17��. More recently, the
dynamics of this model was investigated in the limit of
strong selection using approximate techniques �18–21�.
Since strong selection is not the only biologically relevant
situation, and the selective regime is not the only important
dynamic regime, a more general approach to the dynamics of
the evolutionary version of REM is necessary.

In this contribution, we explore a different mapping be-
tween evolutionary dynamics and statistical physics, namely,
the mapping between the parallel mutation-selection scheme
and the quantum Ising chain in a transverse field �22�, to
solve exactly the dynamics on REM-like fitness landscape
for all range of the selection and mutation parameters. This
approach was already successfully used in the analysis of a
simpler fitness landscape, the Single-Peak fitness landscape
�23� and is based on the results of Refs. �24,25�. A more
recent application was the solution of the evolutionary dy-
namics in the case of symmetric fitness landscapes �i.e., the
fitness is a function of the Hamming distance from a given
reference sequence� �26�.

Here we consider two landscapes, the ordinary REM
landscape and the ferromagnetic REM landscape, where one
of the energy levels of the ordinary REM is selected and
changed to an energy value lower than the typical ground-
state energy. For both landscapes, we find that the dynamic
behavior for short times depends on the �Malthusian� fitness
of the initial configuration. When the fitness of the initial
configuration is higher than the mutation rate, the dynamics
freezes at the initial configuration, resulting in a pattern of
stasis �provided that the initial fitness is not the global maxi-
mum�. Otherwise, when the initial fitness is lower than the
mutation rate, the dynamics is characterized by a regime of
pure diffusion in the sequence space. In the ordinary REM,
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we find that these short-time regimes—diffusion or stasis—
change abruptly to a spin-glass-like regime, which is associ-
ated to the equilibrium frozen phase of the REM. This dy-
namic transition is signaled by a discontinuity of the mean
fitness as well as of the average overlap with the initial,
reference sequence. Most importantly, we find that these
quantities tend to their equilibrium values as 1 / t for large
time t. In the case of the ferromagnetic REM we find up to
four distinct dynamic regimes: diffusion or stasis, spin glass
and ferromagnetic. As before, the transitions between these
regimes are signaled by discontinuities in the biologically
relevant observables, but the system relaxes to the equilib-
rium ferromagnetic state in a finite time.

Our results are interesting for the statistical physics as-
pects of information theory as well �27–32�, as REM statis-
tical physics gives a simple derivation of most of information
theory results. The idea of coding via statistical mechanics is
to construct a spin Hamiltonian, which has a known ground
state for a specific choice of the deterministic spin couplings
�the nontrivial aspect of the problem is that the ground state
of the Hamiltonian should be robust to some degree of noise
in those couplings�. The ground state of the Hamiltonian
could then be recovered from the starting configuration using
some update dynamics, as in the case of associative memory
neural networks �33�. Thus, by solving an evolution model
we get as a by-product an analytical decoding dynamics for
optimal codes.

The rest of the paper is organized as follows. In Sec. II we
introduce the evolution equations for the parallel mutation-
selection scheme and discuss its relation with the quantum
Ising chain in a transverse field. The basic equations for the
dynamics obtained using the Suzuki-Trotter formalism �34�
are introduced also in that section. In Sec. III we review the
main results obtained in the analysis of the single-peak land-
scape �23� as they underlie most of the arguments used in the
solution of the more complex landscapes. In Secs. IV and V
we present the exact solution of the evolutionary dynamics
of the ordinary REM and of ferromagnetic REM, respec-
tively. Finally, in Sec. VI we summarize our main results and
present some concluding remarks.

II. ISING QUANTUM CHAIN FORMULATION

In this contribution, we consider the so-called parallel
mutation-selection scheme in which mutation and selection
are considered as independent events �35–37�, i.e., mutations
can occur at any time during the existence of a sequence, not
only at the moment of replication as assumed in Eigen’s
molecular quasispecies model �10�. As usual, we represent a
molecule or genome of length N by a sequence of binary
digits �spins� sk= �1 with k=1, . . . ,N so that there are 2N

distinct molecules Si��s1
i , . . . ,sN

i �. In the parallel mutation-
selection scheme, the relative frequencies of molecules i
=1, . . . ,2N are given by �35�

dpi

dt
= pi�ri − �

j=1

2N

rjpj� + �
j=1

2N

mijpj , �1�

where ri are Malthusian fitnesses, which can take on positive
as well as negative values �36�, and mij is the mutation rate

from Si to Sj. Since mutations can connect only nearest
neighboring sequences in the 2N-dimensional sequence
space, we choose mij =� if d�Si ,Sj�=1; mii=−N� and mij
=0, otherwise. Here, d�Si ,Sj� is the Hamming distance be-
tween sequences Si and Sj and � is the mutation rate per site.
As �imij =0, the dynamics �Eq. �1�� maintains the normaliza-
tion �ipi=1 for all t. Finally, we recall that ri= f�s1

i , . . . ,sN
i �

determines the so-called fitness landscape.
A key observation at this stage is the finding that the

nonlinear dynamic system Eq. �1� can be reduced to a linear
system

dxi

dt
= �

j

Hijxj , �2�

where Hij =Hji�ri�ij +mij using the transformation �38�

xi�t� = pi�t�exp	�
j

rj

0

t

d�pj���� . �3�

In practice, we solve the linear system Eq. �2� and then ob-
tain the original sequence frequencies via the normalization
pi=xi /� jxj. From the numerical perspective, solution of this
linear system is straightforward, the sole limitation being the
exponential increase in the number of equations with the
sequence length N.

For certain fitness landscapes, however, the case of infi-
nite length sequences can be solved analytically thanks to a
cunning observation by Baake et al. �22�, who realized that
the linear system Eq. �2� can be mapped into an Ising quan-
tum chain in a transverse magnetic field with spin interac-
tions that depend on the specific choice of the fitness land-
scape. More pointedly, the linear system Eq. �2� is equivalent
to the evolution of the quantum system described by the
Hamiltonian �22�

− H = ���
k=1

N

�k
x − N� + f��1

z , . . . ,�N
z � , �4�

where �k
x,z stands for the Pauli spin operators acting in site k,

i.e., �k
x,z=1 � . . .1 � �x,z � 1. . . � 1 with �x,z in the kth place.

Introducing the time evolution operator T�t�=exp�−Ht�
we can write a formal expression for the original molecules
frequencies, namely,

pj�t� =
1

N�
i=1

2N

Zji�t�pi�0� , �5�

where Zji�t�= �Sj
T�t�
Si� and N=� jiZji�t�pi�0� guarantees the
correct normalization. Here 
Si�= 
�1

i � � . . . � 
�N
i � where 
�k

i �
is an eigenstate of �k

z.
Since there is an equivalence between the quantum Ising

chain, such as that described by Hamiltonian Eq. �4�, and a
classical anisotropic two-dimensional Ising spin model �34�,
then Baake et al.’s observation shows that there is a mapping
between the parallel mutation-selection evolution scheme
and the two-dimensional Ising model. It is interesting that a
similar result holds for Eigen’s quasispecies model as well
�11,12�.
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The challenge here is to calculate Zji�t�, which is propor-
tional to the probability that state 
Si� transitions to state 
Sj�
in a time interval of length t. Henceforth, we will refer to Zji
as the transition amplitude between those states. In the case
that the spins interaction, i.e., the term f��1

z , . . . ,�N
z � in Eq.

�4�, can be neglected we have T→Tdif f =exp���i��i
x−1�� so

that Zji can be readily evaluated �34� �see also �23��,

�Sj
Tdif f�t�
Si� = exp�N���m,t� − �t�� , �6�

where

��m,t� =
1 + m

2
ln cosh��t� +

1 − m

2
ln sinh��t� �7�

and m is the overlap between configurations Si and Sj, i.e.,
m=�ksk

i sk
j /N. On the other hand, in the case the interactions

are dominant we have T→Tint=exp�−N�t+ f��1
z , . . . ,�N

z �t�
and so

�Sj
Tint�t�
Si� = exp�− N�t + f�Si�t��ij . �8�

For a given ensemble of initial configuration Si our aim is to
determine, which configurations Sj maximize the transition
amplitude Zji�t�. From Eq. �6� we can already realize that the
answer will depend only on the overlap between these two
configurations and so the problem is reduced to finding the
overlap m that maximizes Zij. Henceforth, we will refer to
this maximum as Z=maxj Zji, thus omitting, for the sake of
simplicity, the dependence on the initial configuration index
i. Of course, because of the large N limit we have Z=� jZji as
well.

The simplest fitness landscape for which the transition
amplitudes Zji can be calculated exactly is the so-called
single-peak �SP� fitness landscape. �The SP happens to be
also the most studied fitness landscape in the quasispecies
literature.� In this case, there is a single configuration—the
master sequence S0—with a high-fitness value NJ0, whereas
all other configurations have their fitness values set to zero.
By choosing the master sequence as S0= �1, . . . ,1�, the spin
interactions for the SP landscape can be written as �23�

fSP��1
z , . . . ,�N

z � = NJ0��
k

�k
z/N�p

�9�

in the limit p→	. What makes the SP problem analytically
solvable was the remarkable finding that Z can be written in
a factorized form

Z = �
j



0

t

dt1�Sj
Tint�t − t1�
Sj��Sj
Tdif f�t1�
Si� . �10�

We refer the reader to the Appendix of Ref. �23�. for the
detailed derivation of this result, which is based on the
Trotter-Suzuki scheme �34� �see also �24,25�� that introduce
infinitely many intermediate time steps between the initial
and the final configurations. The key point for the factoriza-
tion is the large p-spin interaction �see Eq. �9�� in the Hamil-
tonian, which results in a ground-state configuration with
fitness much greater than the fitness of typical configurations.
This is obvious for the SP landscape �except for the master,
all configurations have zero fitness�, but also holds for the
REM landscape for which typical configurations have fitness

on the order of N1/2 whereas the ground state has fitness on
order of N.

III. SP FITNESS LANDSCAPE

It is instructive to present the results for Z in the case of
the single-peak landscape defined in the previous section and
investigated in Ref. �23�. In particular, here we focus on the
time dependence of the average overlap m between the con-
figurations at time t and the initial configuration, a quantity
which was not explored in that seminal work. First, we re-
place the sum over the final configurations Sj by an integral
over all possible values of the overlap between the final and
the initial configurations, taking into account that for large N
there are 
�m�=exp�Nh�m�� distinct configurations for a
fixed overlap m, where

h�m� = −
1 + m

2
ln

1 + m

2
−

1 − m

2
ln

1 − m

2
. �11�

Then we use Eqs. �6� and �8� to rewrite Z as

Z = 

−1

1

dm

0

t

dt1 exp�NFSP�m,t1�� , �12�

where

FSP = h�m� + ��m,t1� − �t + J0�t − t1� . �13�

The integrals over m and t1 can be easily carried out for
large N using Laplace’s method as only the contribution of
the maximum of FSP is relevant for the evaluation of Z. We
find a maximum at the extreme of the t1 integration interval,
i.e., t1= t, which, according to Eq. �10�, corresponds to a
regime of pure diffusion in the sequence space. In fact, maxi-
mization of FSP with respect to m for t1= t yields

m = exp�− 2�t� , �14�

from where we obtain FSP=0. Next, we consider the maxi-
mum within the integration intervals. The condition of maxi-
mum with respect to t1 yields

�1 + m�tanh��t1� +
1 − m

tanh��t1�
−

2J0

�
= 0. �15�

This is a quadratic equation for the unknown tanh��t1�,
which has real solutions provided that J0�� regardless of
the value of the other unknown, m. This is an evidence that
this solution describes the selective regime of the parallel
selection-mutation evolution model. Now, maximization of
FSP with respect to m yields m=exp�−2�t1�. The problem is
that inserting this expression into Eq. �15� results in J0=�,
and so for this particular situation m can take on any value,
whereas t1 is given by Eq. �15� and FSP=0.

To understand what is happening here we recall that the
average overlap between the sequences in the quasispecies
distribution at equilibrium and the master sequence equals
exactly 1 in the N→	 limit. This is so despite the fact that
the master sequences comprise only the fraction 1−� /J0 of
the total number of sequences at equilibrium. In the same
vein, the overlap m between the initial configuration and the
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equilibrium configurations become identical to the overlap
m0 between the initial configuration and the master sequence,
which is an arbitrary quantity defined by the initial condi-
tions of the system. This explains the fact that the overlap m
in Eq. �15� is not specified by the maximization conditions
for J0=�: it is determined by the initial conditions, m=m0.

To take into account the possibility that the dynamics
reaches the close neighborhood of the master sequence, and
so the overlap m�t� freezes at the value m0, in a finite time
we now calculate the transition amplitude Z0i between Si and
the master sequence S0 in the time interval t, given that m0
=�ksk

i sk
0 /N. Since the final state is fixed the entropic term Eq.

�11� must be dropped and we find

Z0i � exp�N���m0,t1� − �t + J0�t − t1��� , �16�

where t1 is given by Eq. �15� with m=m0. Recalling that
FSP=0 for the diffusive regime Eq. �14�, the selective regime
takes over at time t such that ��m0 , t1�−�t+J0�t− t1�
0
�23�. Figure 1, which exhibits the time dependence of the
overlap m, summarizes these results for a particular choice of
J0 /� and m0. The jump of the overlap m at �tdf signals the
transition between the diffusive and the selective �frozen�
dynamic regimes. We note that for the value of J0 /�=2 used
in the figure, the overlap jumps up if m0
0.112 and jumps
down otherwise. The transition between the two regimes is
continuous for m0�0.122. As illustrated in Fig. 1, the results
of the numerical integration of the system of Eqs. �1� using
the Runge-Kutta method show a clear trend to converge to
the theoretical predictions as the sequence length N in-
creases.

To conclude this brief overview of the parallel mutation-
selection dynamics for the SP landscape we mention that the
mean fitness R of the population is zero in the diffusive
regime and R=J0−� �i.e., J0 times the frequency of master
sequences in the population, 1−� /J0� in the selective phase.

IV. REM FITNESS LANDSCAPE

In this case the fitness landscape is given by �13,14�

f�s1, . . . ,sN� = �
i1�i2. . .�ip

Ji1. . .ip
si1

. . . sip
, �17�

where the couplings Ji1. . .ip
are Gaussian distributed random

variables of zero mean and variance �Ji1. . .ip
2 �=J2p ! / �2Np−1�.

Taking the limit p→	 in Eq. �17� results in 2N independent
energy levels, E�−f�s1 , . . . ,sN�, distributed by a Gaussian
distribution

w�E� =
1

J��N
exp�−

E2

NJ2� . �18�

The equilibrium statistical mechanics of the quantum Ising
model in a transverse field, Eq. �4�, with spin interactions
given by Eq. �17� was studied in Ref. �24�. In the zero-
temperature limit, which is the limit relevant to our analysis,
there are two phases, namely, a spin-glass or frozen phase
that occurs for large J, and a paramagnetic phase. The dis-
continuous transition between these phases takes place at
J /�=1 /�ln 2�1.201 �24�. Clearly, within our evolutionary
interpretation of the model, this phase transition corresponds
to the error threshold phenomenon: for mutation rates greater
than J�ln 2 the adaptive information stored in the fitness
landscape no longer affects the frequencies of sequences in
the population, which become uniformly distributed.

Because of the presence of the quenched random vari-
ables Ji1. . .ip

, the derivation of the equations for the dynamics
of the REM is more involved compared with that for the SP
landscape. A rigorous derivation of the factorization Eq. �10�
can be done using the Trotter-Suzuki scheme �24,25,34� as in
the SP fitness landscape �23�. Here we give a qualitative
derivation based on the general results described in Sec. II.

Effectively, we simply must replace f�Si� in Eq. �8� by Ei
�i.e., by the energy of the initial configuration Si�, which
amounts to replacing J0 in Eq. �13� by Ei /N. Since our final
results must be averaged over the energies of the final con-
figurations Sj �see Eq. �10�� we have

Z = 

0

t

dt1

−1

1

dm
 dE

J��N
�	h�m� − � E

NJ
�2�

� exp	−
E2

NJ2 + E�t − t1��
� exp�Nh�m� + N��m,t1� − N�t� . �19�

Here, the theta function enforces the constraint

h�m� − � E

NJ
�2

� 0, �20�

which guarantees that the average number of configurations
with energy E and overlap m with the initial configuration,
given by exp�Nh�m�−E2 /NJ2�, is exponentially large, so that
Z becomes a self-averaging quantity �13,16�. Hence Eq. �19�
describes a typical situation of the dynamics at a fixed time t.
Strictly, this equation is valid when the energy of the initial
configuration Ei is larger then −�. We will discuss later the
corrections necessary to describe the case where this condi-
tion is violated. In addition, we assume that the overlap m0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

m

γt

FIG. 1. Average overlap with the initial configuration as func-
tion of the scaled time �t for J0 /�=2, m0=0.5 and �broken lines
from bottom to top at �tdf �0.763� N=8, 12, 16, and 24. The thick
solid line is the theoretical prediction.
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between the ground-state configuration and the initial con-
figuration is zero.

The crucial step now is to evaluate the integral over E in
Eq. �19� via Laplace’s integration for fixed m and t1. Noting
that the result of the integration depends on whether the criti-
cal point E�=NJ2�t− t1� /2 satisfies or not the constraint Eq.
�20� and dropping trivial multiplicative factors, we rewrite Z
as

ZD = 

0

t

dt1

−1

1

dm exp�NFD�m,t1�� , �21�

where

FD = h�m� + ��m,t1� − �t + J2�t − t1�2/4 �22�

provided that

h�m� − J2�t − t1�2/4 
 0, �23�

or

ZSG = 

0

t

dt1

−1

1

dm exp�NFSG�m,t1�� , �24�

where

FSG = ��m,t1� − �t + J�h�m��t − t1� �25�

in the case that

h�m� − J2�t − t1�2/4 � 0. �26�

Equation �24� results when the critical point E� is outside the
energy integration interval, and so the argument of the expo-
nential is maximized by the energy E at the extreme of that
interval, namely, E=NJ�h�m�. As before, for large N we
need to find the values of m and t1 that maximize the argu-
ments of the exponentials, Eqs. �22� and �25�. The correct
solution is then the one that corresponds to the largest of ZD
and ZSG, i.e., Z=max�ZD ,ZSG�.

We begin with the analysis of ZD, Eq. �21�. Calculation of
the extreme of FD�m , t1� with respect to m and t1 yields m
=exp�−2�t+4�2 /J2� and t1= t−2� /J2, so that FD=−�2 /J2

�0. Next, we must evaluate FD at the upper extreme of the
t1 integration interval, i.e., at t1= t. This is the pure diffusion
regime discussed in Sec. III which results in Eq. �14� and
FD=0. The lower extreme t1=0 yields FD→−	 and the ex-
tremes of the m integration interval �i.e., m= �1� need not
be considered because h�m= �1�=0 and so the condition
Eq. �23� is violated. We note that the solution given by Eq.
�14�, which describes the pure drift or diffusion in the se-
quence space, exists for all parameter values since h�m��0
and so the inequality Eq. �23� is always satisfied. In addition,
since solution �Eq. �14�� yields the largest value of the expo-
nent FD, the other solutions must be discarded.

We turn now to the analysis of ZSG, Eq. �24�. As before,
we start by the maximization of FSG�m , t1� with respect to
both integration variables, m and t1. At the maximum, we
find that the values of these variables are given by the solu-
tion of the equations

ln tanh��t1� +
J

2

�t − t1�
�h�m�

ln�1 + m

1 − m
� = 0 �27�

and

�1 + m�tanh��t1� +
1 − m

tanh��t1�
−

2J

�
�h�m� = 0. �28�

These equations have to be solved numerically, but the solu-
tion is simple because Eq. �28� can be rewritten as a qua-
dratic equation y� tanh��t1��1, which then can be written
explicitly in terms of the unknown m. Regardless of the
value of m, this quadratic equation has real solutions pro-
vided that J /�
1 /�ln 2 and so we identify this dynamic
regime with the frozen spin-glass phase of the quantum ver-
sion of REM �24�. In addition, in the case that both roots of
y are physical �i.e., less than 1�, our numerical analysis indi-
cates that we should always choose the smaller root since it
corresponds to the largest value of the exponent FSG.

To conclude the analysis of ZSG, we must consider the
contributions from the extremes of the integration intervals.
The extreme t1= t is discarded because it violates condition
Eq. �26�, whereas the contribution of t1=0 can be ignored
because it yields FSG→−	. Regarding the extremes m
= �1, we find that in this case FSG is maximum when t1
takes on its extreme value, t1= t. This corresponds to the
contribution from the border h�m�−J2�t− t1�2 /4=0 which we
will discuss in detail in the Appendix. Our numerical analy-
sis indicates, however, that the border contribution can be
ignored since it yields an exponent FB �see Eq. �A2�� which
is always smaller than the exponents obtained using the so-
lution of the Eqs. �27� and �28�.

In addition to the average overlap m between the initial
and the configuration at time t, we can calculate the time
dependence of the mean fitness R of the sequence population
as well. The reasoning to derive R is sketched as follows. For
the diffusive regime we have R=0 since the average fitness
of any large sample of configurations visited in this regime is
clearly zero for the REM fitness landscape. To estimate the
mean fitness in the selective regime we just note the equiva-
lence between the results for the single-peak landscape �see
Eqs. �12� and �13�� and for the selective phase �see Eqs. �24�
and �25�� if we identify J0 with an effective, time-dependent
single-peak fitness value Jef f =J�h�m�. �Note that for t→	
we have m→0 so that Jef f →J�ln 2, which is the ground-
state fitness value of the REM.� Since the population is
formed by master copies with fitness value NJef f as well as
by clouds of mutants with much smaller fitness �on the order
of N1/2� the mean fitness of the population in the selective
regime becomes

R = J�h�m� − � , �29�

in accord with the well-known result for the �parallel� ver-
sion of the single-peak landscape.

In summary, for fixed J /� and �t we must solve the
saddle-point Eqs. �27� and �28� to obtain the exponent FSG
�as well the saddle-point Eq. �A3� given in Appendix, but we
have already mentioned that its contribution must be dis-
carded� and then compare with the exponent of the diffusive
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regime FD=0. If FSG
0 we pick the value of m associated
to the selective regime, otherwise we pick the diffusion so-
lution given by Eq. �14�.

A. Analysis of the results

Figure 2 illustrates the typical time evolution of the aver-
age overlap m with the initial configuration. We recall that
the fitness of this initial configuration must be less than � and
its overlap with the ground-state configuration must be zero.
As expected, for small �t the diffusive regime dominates and
so m is given by Eq. �14�. As �t increases further, the selec-
tive regime takes over rather abruptly, as shown by the dis-
continuity of the overlap m at a critical time value �tds. This
bizarre behavior, which occurs also in the single-peak fitness
landscape, is consequence of our characterization of the dy-
namics in a very large-dimensional sequence space by a
single parameter: no such discontinuous behavior is observed
when following the time evolution of the individual se-
quence frequencies, pi for i=1, . . . ,2N.

Since the properly scaled critical time �tds at which the
discontinuity of the overlap m �and, consequently, of the
mean fitness R� takes place can be used to separate the re-
gions of validity of the two distinct dynamic regimes, in Fig.
3 we present the dynamic ‘phase diagram’ of the parallel
evolutionary version of REM. As expected, �tds diverges as
the J /� approaches the value 1 /�ln 2 which yields the equi-
librium phase boundary between the paramagnetic and the
frozen spin-glass phases. For large J /� we find that �tds van-
ishes as �J /��−2. Also of interest is the size of the overlap
jump at �tds, shown in Fig. 4. The fact that this quantity
exhibits a maximum could already be inferred from Fig. 2,
since the overlap m tends to 1 or 0 in both dynamic regimes
when J /� approaches its extreme values.

B. Numerical integration

To complement our theoretical analysis, which is exact for
infinite sequence lengths, we have carried the direct numeri-

cal integration of the linear system of ordinary Eqs. �2� for
sequence lengths up to N=24 using the fourth-order Runge-
Kutta integrator �39�. The stability of the numerical proce-
dure benefited greatly from the fact the differential equations
are linear. For N�10 we can find all eigenvectors and eigen-
values of the symmetric matrix H and so solve the dynamics
exactly for any t within an arbitrarily high numerical preci-
sion. Of course, the two numerical methods yield identical
results provided that �t is not too large. Figures 5 and 6
summarize our numerical results for the J /�=4. For each
time t the data in these figures represent the average over 104

independent samples. The samples differ by the fitness val-
ues assigned to each configuration. For all samples the initial
configuration was such as to have fitness value less than �
and zero overlap with the ground-state configuration.

Figure 5 is reassuring because the crossings of the lines
for distinct N indicate the onset of a threshold phenomenon
in the thermodynamic limit N→	. In particular, to repro-
duce the analytical predictions, the first intersection point
should tend to �t=0 whereas the second should tend to
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FIG. 2. Average overlap with the initial configuration as func-
tion of the scaled time �t for �thin solid lines from top to bottom at
�t=2� J /�=2, 3, 4, and 5. The thick solid line is the function
exp�−2�t�, which describes the overlap in the diffusive regime,
J /��1 /�ln 2.
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FIG. 3. Scaled critical time �tds at which the discontinuous dy-
namical transition between the diffusive and the selective regimes
takes place as function of the dimensionless parameter J /�. For
J /��1 /�ln 2 only the diffusive regime occurs. The selective re-
gime is dominant in the region t
 tds �i.e., above the solid line�.
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FIG. 4. Size of the overlap discontinuity �m at t= tds as function
of the dimensionless parameter J /�. The maximum of this curve
occurs at J /��2.504. For large J /� we find that �m vanishes as
�J /��−2.
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�tds�0.292. To verify whether our data exhibit the correct
trend, we show in Fig. 7 the values of �t at which the mean
fitness curves intersect for successive values of N. The ex-
trapolation to N→	 yields �t=−0.01�0.01 for the first
crossing and �tds=0.30�0.01 for the second crossing. The
agreement with the theoretical prediction is excellent, given
the short sequence lengths used in the numerical integration.
Oddly enough, the dependence of the overlap m on the se-
quence length N, shown in Fig. 6, does not exhibit the char-
acteristic crossings that signalize the onset of a threshold
phenomenon in the thermodynamic limit, although the curve
for N=24 already begins to take a shape that resembles the
theoretical prediction. It seems that much larger sequence
lengths are needed in order we can obtain clear evidence of a
threshold phenomenon using the overlap data. We refer the
reader to Ref. �40� for a full analysis of the finite size effects
of the error threshold transition of the quasispecies model.

C. High-fitness initial configuration

To complete our analysis of the calculation of Z we con-
sider now the situation in which the energy of the initial

configuration Ei is such that Ei�−�, i.e., this configuration
has a relatively high fitness. In this case, we find a paramag-
netic �but nondiffusive� regime where the system stays in the
original configuration with a probability proportional to �see
Eq. �8��

Z = exp�N�− Ei − ��t� �30�

and mean fitness R=−Ei. Since the argument of the exponen-
tial is always positive, this regime replaces the diffusive re-
gime altogether. As t increases, it eventually becomes re-
placed by the selective regime at some threshold time tds�

 tds. However, the dependence of tds� on the particular value
Ei makes this case rather unattractive, as compared with the
case where the initial configuration has a low-fitness value.

Finally, we note that the probability that Ei�−� is
1
2erfc�� /J�N�, which tends to 1/2 for large N, hence, we
could more simply distinguish the two situations–high- and
low-initial fitness–by verifying whether the energy of the ini-
tial configuration is positive or negative. More importantly,
these two cases are equally likely and our penchant for the
low-fitness initial configuration here is justified only by the
generality of the results obtained in that case.

D. Relaxation to equilibrium

The approach to the equilibrium state as �t→	 is particu-
larly interesting because it is related to the speed of evolu-
tion, i.e., how long it takes for a random sequence to reach
the global maximum of a rugged fitness landscape. In con-
trast with the finite-time dynamics described before, the re-
sults of the asymptotic analysis do not depend on the specific
value of the fitness of the initial configuration. We still re-
quire, however, that the initial configuration has zero overlap
with the ground state.

As we focus on the limit of large �t, the relevant equa-
tions to describe the system dynamics are Eqs. �27� and �28�.
From Fig. 2 we can see that m→0 in this limit and so Eq.
�28� yields
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FIG. 5. Scaled mean fitness R /� of the REM landscape as func-
tion of the scaled time �t for J /�=4 and �broken lines from top to
bottom at �tds�0.292� N=12, 16, 20, and 24. The thick solid line is
the theoretical prediction.
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FIG. 6. Average overlap with the initial configuration as func-
tion of the scaled time �t for J /�=4 and �broken lines from bottom
to top at �tds�0.292� N=12, 16, 20, and 24. The thick solid line is
the theoretical prediction.
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FIG. 7. Values of �t at which the mean fitnesses of sequences of
length N and N+2 intersect shown as function of 1 /N for N=12,
14, 16, 18, 20, and 22 for J /�=4. The symbols � and � identify
the first and the second crossings, respectively �see Fig. 5�, whereas
the filled symbols indicate the theoretical predictions. The solid
lines are the linear fittings used to obtain the extrapolated values at
1 /N=0.
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y = � − ��2 − 1, �31�

where y=tanh��t1� and �=J�ln 2 /�. Since y�1 for �
1, t1
is finite and then, taking the limit t→	 in Eq. �27�, we find

m = �−
ln 2 ln y

�
� 1

�t
. �32�

This important result indicates that relaxation to equilibrium,
which is characterized by the ground-state configuration to-
gether with a cloud of very close mutant configurations �the
quasispecies distribution� is given by a power law with ex-
ponent −1.

An estimate of the speed of evolution can be obtained by
considering the prefactor of 1 /�t in Eq. �32�. We find that
this prefactor vanishes at the extremes �=1 and �→	, and
reaches a maximum at ��1.810 or J /��2.174. �If we had
included the curve for, say, J /�=1.5 in Fig. 2 we could have
observed this nonmonotonic behavior there.� This parameter
setting corresponds then to the slowest convergence to equi-
librium, i.e., the minimum speed of evolution. The maximum
speed is obtained by setting �→	 �or J /�→	�, which
amounts to taking a vanishingly small mutation rate.

To check whether a similar power-law scaling for large
times holds also for �infinite� populations of finite length
sequences, we solved the linear system Eq. �2� through the
direct diagonalization of H, which is feasible only for rela-
tively small sequence lengths. Figure 8 summarizes our nu-
merical results, which represent the average over 104 inde-
pendent samples. We find that the finite N data is very well
fitted by the scaling law m� ��t�−�N with �6=1.77, �8
=1.36, and �10=1.17. Assuming that �	=1 we find that
these exponents, in turn, are described perfectly by the func-
tion �N=1+7.48 exp�−0.38N�, which indicates a very rapid
approach to the value of the infinite-length exponent.

V. FERROMAGNETIC REM LANDSCAPE

In the ferromagnetic REM �13,27�, we choose a particular
configuration, say S0= �1, . . . ,1�, and set its fitness value to

J0N. The other 2N−1 configurations are assigned random fit-
ness values −E with E distributed by the Gaussian distribu-
tion Eq. �18�. From the evolutionary modeling perspective,
the fitness level produces a gap in the fitness landscape,
which, as we show here, results in nontrivial dynamic con-
sequences.

The quantum spin version of the ferromagnetic REM is
defined by Hamiltonian Eq. �4� with the fitness function

f�s1, . . . ,sN� = �
i1�i2. . .�ip

Ji1. . .ip
si1

. . . sip
+ NJ0� 1

N
�

k

sk�p

,

�33�

where the multispin couplings Ji1. . .ip
are defined as in Sec.

IV. This fitness landscape is thus a linear combination of the
SP and REM landscapes. The equilibrium statistical mechan-
ics of the quantum ferromagnetic REM was studied in Ref.
�25�, where the condition for the existence of the ferromag-
netic phase at zero temperature �i.e., for S0 be the ground-
state configuration� was found to be J0
J�ln 2. Here, we
will consider only parameter settings that satisfy this condi-
tion.

As in the previous cases, we use the decomposition of the
transition amplitude Z, Eq. �10�, to solve the dynamics for
the overlap m between the initial and the typical configura-
tions at time t. The important change is that now the sum
over the final configurations Sj in Eq. �10� does not include
the master sequence S0, which must be considered separately.
Hence, we find that Z is given by a sum of two terms, the
first is the REM contribution, Eq. �19�, and the second is the
SP contribution, Eq. �16�. In particular, we focus on the case
m0=0 only, so that the latter equation becomes

ZF = exp�N	1

2
ln

sinh�2�t1��
2

− �t + J0�t − t1���� , �34�

where y�� tanh��t1�� is given by the quadratic equation
�y��2−2J0y� /�+1=0 �see Eq. �15� with m=m0=0�, which
has real solutions for J0��. As the interesting situation is
one where the spin-glass solution, given by Eqs. �27� and
�28�, exists as well, so that J /�
1 /�ln 2, we have

J0

�



J

�
�ln 2 
 1, �35�

so the existence of the ferromagnetic and spin-glass phases
guarantees that y� is real.

To obtain the time evolution of m�t� we first calculate
ln ZSG using Eq. �24� and ln ZF using Eq. �34� for fixed t.
�We take logarithms here because the relevant quantities are
the expressions in the arguments of the exponentials that
define the transition amplitudes.� If these two quantities are
negative, we choose the diffusive solution, Eq. �14�. If
ln ZF
 ln ZSG then the system is in the ferromagnetic regime
and so m=0; otherwise we choose m given by the spin-glass
solution, Eqs. �27� and �28�.

As the setting J0
J�ln 2 implies that the equilibrium
phase is the ferromagnetic one, one must have m=0 for large
�t. On the other hand, if the fitness of the initial configura-
tion is not greater than � �which we tacitly assume in this
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FIG. 8. Asymptotic dependence of the average overlap on �t for
J /�=4 and �broken lines from bottom to top� N=6, 8, and 10. The
thick solid line is the theoretical prediction, which yields m
�1 / ��t� �see Eq. �32��.
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section�, the diffusive regime dominates for small �t. The
question is then whether an intermediate, spin-glass regime
appears between these extremes. The answer is given in Fig.
9, which indicates that the appearance of the intermediate
regime depends on the values of the parameters J and J0. To
determine the region in the space of parameters �J /� ,J0 /��
where the spin-glass regime interfaces the other two regimes,
we have to calculate the value of J0 /� such that the time tds
at which the transition from the diffusive to the spin-glass
regime coincides with the time tdf at which the diffusive
regime transitions to the ferromagnetic one. Note that tds
depends only on J as shown in Fig. 4. As for the time t
= tdf at which the transition between the diffusive and the
ferromagnetic regimes takes place, it can be calculated ana-
lytically by setting ln ZF=0 �see �23��. The final result is

�tdf =
1

4��0 − 1���0 ln
�0 + 1

�0 − 1
+ ln�4��0

2 − 1��� , �36�

where �0=J0 /�. The procedure for searching the values of
J0 /�, for fixed J /�, at which tds= tdf is implemented numeri-
cally and the result is shown in Fig. 10. Above the thick solid
line there are only two dynamic regimes, the diffusive and
the ferromagnetic, and the time tdf at which the transition
occurs is given by Eq. �36�. In what follows we will concen-
trate on the study of the dynamics for the parameters in the
region below that line, where the three dynamic regimes are
present. In particular, we will focus on the transition between
the spin glass and the ferromagnetic regimes, which happens
at time t= tsf.

Before we offer an analytical approximation to tsf, it is
instructive to study numerically its dependence on J0 /� and
J /�. This is shown in Fig. 11, from where it becomes clear
that tsf is defined in a narrow region of the parameter space,
determined by the conditions that the ferromagnetic phase
exists and that the spin-glass regime interfaces the diffusive
and ferromagnetic regimes. Figure 12 shows the discontinu-

ity of the overlap at tsf. Since the overlap in the ferromag-
netic regime is zero, the jump �m is actually the overlap in
the spin-glass phase.

The divergence of tsf and the vanishing of �m=m as J0
approaches J�ln 2 allows us to derive an analytical expres-
sion for tsf in this limit. In fact, Eq. �32� already provides an
explicit expression for m, namely,

m = −
�ln 2 ln y

Jtsf
, �37�

since tsf is large. The equation that defines tsf is obtained by
equating ln ZF /N to FSG,

ln	 sinh�2�t1��
sinh�2�t1�� + m ln tanh��t1� + 2J�h�m�t1

= + 2J0t1� − 2�J0 − J�h�m��tsf . �38�

Recalling that for ���J0−J�ln 2� /J0→0 we have �→�0
and so t1�→ t1, we rewrite this expression as
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FIG. 9. Average overlap m as function of scaled time �t. The
solid curve for J0 /�=J /�=3 shows a transition between the diffu-
sive and the spin-glass regimes at �t=0.538, and a transition be-
tween the spin-glass and the ferromagnetic regimes at �t=0.820.
The broken curve for J0 /�=3 and J /�=2 shows a situation where
there is a direct transition between the diffusive and ferromagnetic
regimes at �t=0.693.
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FIG. 10. The spin-glass regime interfaces the diffusive and the
ferromagnetic regimes only in the region of parameters located be-
low the thick solid curve. This curve begins at the point �1 /�ln 2 ,1�
and diverges as J2 for large J. The thin solid straight line is J0

=J�ln 2, below which the ferromagnetic phase is absent.
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FIG. 11. Scaled time at which the spin-glass transitions to the
ferromagnetic for �left to right� J /�=2, 3, and 4. This transition
occurs only within a limited region of the parameter space, as illus-
trated in Fig. 10. The divergences occur at J0=J�ln 2.
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tsf = − m
ln tanh��t1�

2J0�
, �39�

where we used h�m�→ ln 2 for m→0. Finally, inserting m
from Eq. �37� into this expression yields

�tsf = − � ln 2

2�
�1/2 1

�0
ln��0 − ��0

2 − 1� . �40�

As m�1 / ��tsf� we find the typical mean-field result m
��1/2 at the transition.

Since tsf �or tdf, depending on the parameter settings� is
the waiting time for evolution to lead the system close to its
optimal fitness situation, it is interesting to see whether this
waiting time can be minimized by a proper choice of param-
eters �the mutation rate, for example�. For fixed �0, we note
that tsf must satisfy the constraint tsf 
 tdf in the case the
spin-glass regime is present. Hence, the minimum waiting
time tmin is obtained by equating the waiting times given in
Eqs. �36� and �40�. Of course, since �→0 we must set �0
→1 in the former equation. Keeping leading order terms in
�=�0−1, Eq. �36� becomes �tdf ��ln 2� /�, whereas Eq. �40�
reduces to �tsf ��� ln 2 /��1/2. Equating these results yields
�= �� ln 2�1/3 so that the minimum time to reach the optimal
fitness situation is

�tmin =
�ln 2�2/3

�1/3 . �41�

This expression is valid only in the limits J0 /�→1 and
J /�→1 /�ln 2.

VI. CONCLUSION

Most of the techniques from statistical mechanics em-
ployed in the study of evolutionary models, such as Eigen’s
quasispecies model, are manageable only in the stationary
regime t→	 �see, e.g., �12,15,22,41��. Although the equilib-
rium analysis provides valuable insights into the behavior of
these models, a complete study of the dynamics is indispens-
able as evolution is all about species dynamics, after all.

In this contribution, we present an exact solution for the
evolutionary dynamics in an extremely rugged fitness land-

scape, Derrida’s REM �13�. The evolutionary model studied
is the quasispecies model with a parallel mutation-selection
scheme, in which mutations are decoupled from replication
�36�. This scheme can be mapped in Ising quantum chain in
a transverse field �22�, and the dynamics can be solved using
the Suzuki-Trotter formalism as done in the case of the SP
landscape �23�. In fact, the similarity between the SP and
REM-like fitness landscapes regarding their steady-state
distributions—they are identical within the accuracy
�1 /�N—is well known �16�, and here we explore it to de-
rive the evolutionary dynamics on the REM landscape using
the SP landscape results.

The �infinite� population is initially homogeneous, i.e., all
sequences are identical to a reference sequence chosen such
that its overlap with the highest-fitness sequence is zero. In
addition, most of our results are based on the assumption that
the fitness of this reference sequence is negative. We note
that in the parallel mutation-selection scheme, we have a
Malthusian fitness which basically measures the difference
between the reproduction and death rates, and so can take on
positive and negative values as well.

At each time t, the population is characterized by the av-
erage overlap with the reference sequence m�t� as well as by
the mean fitness R�t�. As expected, in the case the initial
configuration has low fitness �i.e., the fitness value is less
than the mutation rate per site ��, the dynamics for small t
corresponds to a random drift in the sequence space with m
decreasing exponentially with increasing t �see Eq. �14��.
Selection, which encodes information in the fitness land-
scape, has no role in the diffusive regime. We find, quite
remarkably, that m undergoes a discontinuous transition at
some finite t= tds �see Fig. 2� when the dynamics enters a
spin-glass regime in which m vanishes as 1 / t for large t. As
opposed to the SP landscape �and to the ferromagnetic ver-
sion of REM; see below�, the dynamics needs an infinite
time to reach the regions close to optimal fitness sequence.
When the initial configuration already has high fitness �i.e.,
the fitness value is greater than �� the diffusive regime is
replaced by a pattern of stasis: the dynamics freezes at the
initial configuration �i.e., m=1 and R=−Ei� for a certain
length of time ti
 tds where ti= ti�Ei� and then undergoes a
discontinuous transition to the spin-glass regime.

In addition to the REM fitness landscape, we considered
also the somewhat more realistic ferromagnetic-REM land-
scape which, as it is clear from Eq. �33�, can be viewed as a
simple combination of the REM and SP fitness landscapes.
For some parameter settings �see Fig. 9�, we find three dis-
tinct dynamic regimes: the diffusive, spin-glass and the fer-
romagnetic regimes. The transitions between these regimes
are signaled by discontinuities of the overlap as well as of
the mean fitness. In a parameter setting such that the equi-
librium phase is the ferromagnetic one, the time to reach the
optimal sequence is finite, as in the SP case, but diverges
near the �equilibrium� transition points. As in the case of the
ordinary REM, the diffusive regime is replaced by stasis
when the initial configuration has a high-fitness value.

The discontinuous transitions between the different dy-
namic regimes are similar to the punctuations, during which
evolution proceeds very rapidly, observed in finite population
simulations �7,8�. In fact, one of the first theoretical models

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

∆m

J0/γ

FIG. 12. The overlap discontinuity �m at t= tsf for �left to right�
J /�=2, 3 and 4. Since the overlap is zero in the ferromagnetic
regime, �m equal the overlap in the spin-glass regime.
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to reproduce the punctuated equilibrium phenomenon made
explicit use of the effect of random genetic drift, which re-
sults from the finitude of the population, to promote the tran-
sition between alternative fitness peaks �42�. Since our re-
sults were derived within the infinite-population assumption,
this process cannot be responsible for the observed punctua-
tions. Alternatively, punctuations are predicted by models in
which initially low frequency beneficial mutation becomes
dominant in a few generations after a certain frequency
threshold is overcome �43,44�. This is the process respon-
sible for the punctuations observed in our model as well as in
microbial population experiments �9�.

The infinite size population assumption behind the quasi-
species-like evolution model considered here is a theoretical
approximation only, and finite population size effects are un-
doubtedly important. The discrete-time evolutionary dynam-
ics on a REM-like fitness landscape has been extensively
investigated in the literature for the finite population case
�18–21,45�. Analytical approximations and numerical simu-
lations have yielded many interesting results about record
statistics and crossover transitions. We note, however, that
the exact solution of the deterministic model exhibits a much
richer dynamical structure. It would be interesting to see
whether there are any vestiges of the discontinuous transi-
tions in the case of finite but large populations and, in par-
ticular, how the coalescent time statistics are affected by
these regime changes �45�.

While our main interest is the investigation of the evolu-
tionary dynamics, our results bear on information theory as
well �46�, as they can be viewed as the exact analytical so-
lution for the decoding process �relaxation to the ferromag-
netic configuration� of optimal codes �27–31�. In particular,
we conjecture that Eq. �41� is universal for some classes of
dynamics near the error threshold-like transitions. In fact, the
connection of evolution models with information theory was
first pointed out by Eigen, who actually used information
theoretical arguments to derive an expression for the error
threshold in the SP landscapes �10�. More recently, the rela-
tion between molecular biology and information theory was
discussed in Refs. �47,48�.

In general, almost any fitness landscape can be qualita-
tively identified with one of three classes: ferromagnetic,
spin-glass and ferromagnetic spin-glass like. The first class,
which exhibits a finite relaxation time to the optimum, seems
too simplistic to bear on real biological situations. The spin-
glass fitness landscape, on the other hand, exhibits an infinite
relaxation time to the optimum, which then could never be
reached by the evolutionary dynamics. The third class, which
combines the complexity of the spin-glass landscape with a
finite relaxation time, seems to be the preferable one from
the evolutionary perspective. Thus natural selection seems to
choose the type of fitness landscape that works more effi-
ciently as an information processing system.

The picture that emerges from computer experiments with
digital organisms �49� resembles the case of SG fitness case.
Although this random macroevolution scenario may be de-
scribed by a spin-glass fitness landscape, Nature’s preference
seems to be for the ferromagnetic spin-glass landscape, as
manifested, for example, by protein evolution. In fact, it is
known that proteins differ substantially from random het-

eropolymers, and that random heteropolymers can be de-
scribed by the ordinary REM, whereas biological polymers
are described quite well by the ferromagnetic REM �50,51�.
Hence, the genome, which codes the information to assemble
the proteins, reveals ferromagnetic or ferromagnetic spin-
glass like fitness landscape. This is close to the idea of chan-
nels in evolution �52�. During the evolution, there are large
rearrangements of the genome, in addition to the point sub-
stitutions considered here. This large transpositions resemble
the multiscale optimization in computer science: perhaps Na-
ture takes advantage of large gene rearrangements, whenever
the search for optimum by means of simple substitutions
becomes too slow �53�. These large events, as well as the
simultaneous point mutations in two or three adjacent sites,
are permitted because they practically do not affect the error
threshold, while the evolution dynamics changes drastically,
e.g., a relaxation time of about 106 years in the case of single
point mutations is reduced to 100 years when triplet adjacent
mutations are allowed �53�. We note that simultaneous mu-
tations in two or three random sites yield the same slow
relaxation as in the case of a single point substitution.

In the theory of computation, optimization problems are
classified as polynomially solvable if the relaxation time to
the optimum scales with some power of the problem size,
and as NP-complete or as NP-hard otherwise, i.e., when the
relaxation time scales exponentially with the problem size
�54�. Hence, the channel-like evolution schemes are not only
ferromagnetic-type fitness, but also resemble the fast compu-
tational schemes of polynomial class.
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APPENDIX: BORDER CONTRIBUTION TO Z

To complete the analysis of the integrals in Eqs. �21� and
�24� for large N, we must consider the contribution from the
border h�m�=J2�t− t1�2 /4. Clearly, in this case we have ZD
=ZSG=ZB with

ZB = 

−1

1

dm exp�NFB�m�� , �A1�

where

FB = 2h�m� + ��m,t1� − �t �A2�

and t1= t1�m� is a function of m given by the border equation.
Maximization of FB with respect to m yields the saddle-point
equation
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ln�1 + m

1 − m
� +

1

2
ln tanh��t1�

=

� ln�1 + m

1 − m
�

4J�h�m�
	�1 + m�tanh��t1� +

1 − m

tanh��t1�� ,

�A3�

which must be solved numerically. At the extremes m= �1
we have t1= t and so FB=ln�1�exp�−2�t��−ln 2�0. Our
extensive numerical analysis comparing the three exponents
FD=0, FSG and FB indicates that whenever FB
0 we have
FSG
FB and so the contribution from the border can be
neglected in comparison with those from the inner saddle
points discussed in the main text.
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